

An Integrated Simulation Strategy for the Thermal Design and Analysis of Electric Vehicles

Gerald Seider, Fabiano Bet London, UK 06/06/2019

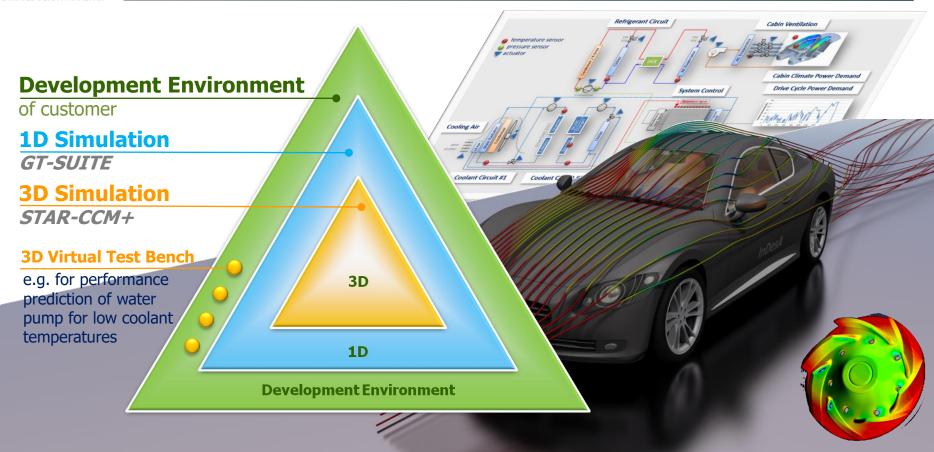
InDesA GmbH • Carl-Zeiss-Ring 19a • D-85737 Ismaning • Phone +49 (89) 552 7978-10 • Fax +49 (89) 552 7978-29 • www.InDesA.de

InDesA

Thermal Design and Analysis of Electric Vehicles InDesA Competence

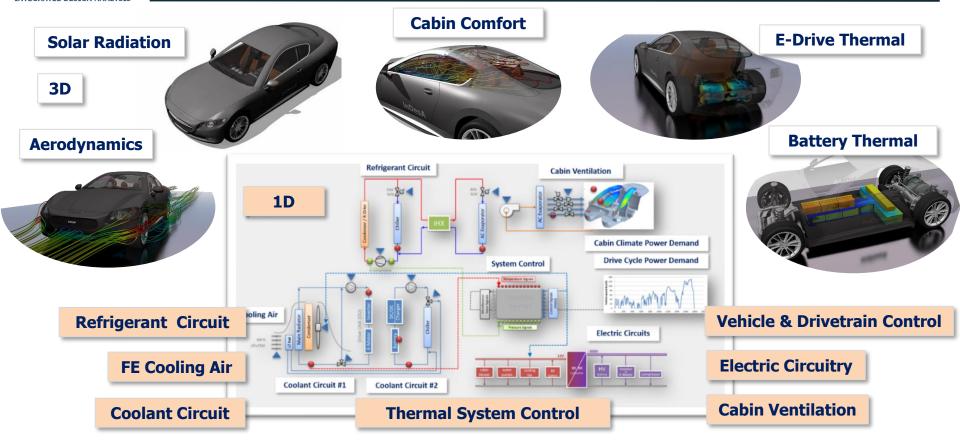
Simulation and Design Analysis of complex systems for engineering and industrial applications

Fluid Flow & Heat Transfer


Hydro & Aerodynamics

Thermal & Energy Management

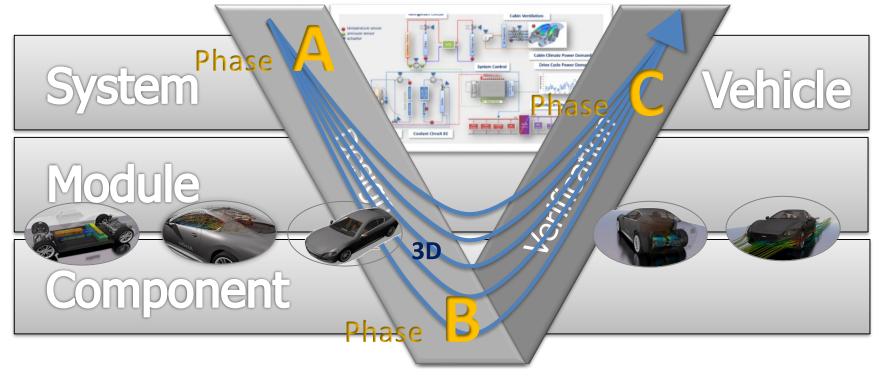
Air-borne Acoustics & Sound Design


Thermal Design and Analysis of Electric Vehicles Integrated Design Analysis

INTEGRATED DESIGN ANALYSIS

INTEGRATED DESIGN ANALYSIS

Thermal Design and Analysis of Electric Vehicles 1D and 3D Thermal & Energy System Simulation



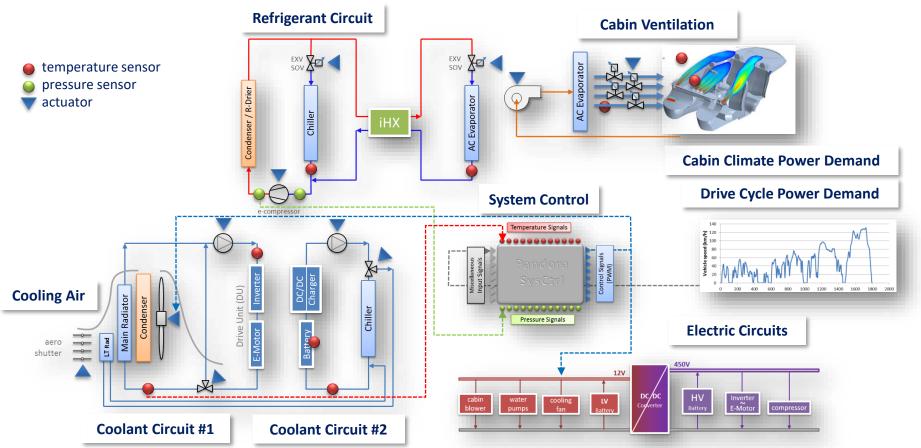
Thermal Design and Analysis of Electric Vehicles Towards 1D High Fidelity System Simulation

INTEGRATED DESIGN ANALYSIS

1D System Simulation

1D High Fidelity Syst. Sim.

INTEGRATED DESIGN ANALYSIS

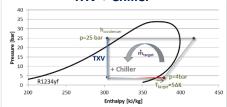

Thermal Design and Analysis of Electric Vehicles Towards High Fidelity System Simulation

Phase

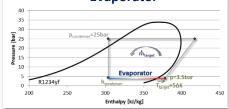
A	Quick evaluation of coolant and refrigerant circuit configurations with regard to cooling/warm-up requirements and range;
Early design	1D System simulation: Use of simple component objects and control strategies.
B CAD design	Evaluation of module behaviour and performance to calibrate 1D component objects and derive new 1D high fidelity compounds. Module/component simulation: Use of 3D CFD/CHT simulation
C	Verification of coolant and refrigerant circuit configurations with regard to cooling/warm-up requirements and range with full control functionalities;
Verification	1D System simulation: Use of high fidelity component objects and controls.

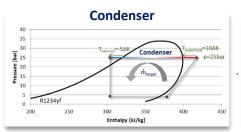
Thermal Design and Analysis of Electric Vehicles Baseline Schematic of Thermal and Electric System

Thermal Design and Analysis of Electric Vehicles Derivation of 1D Component Library

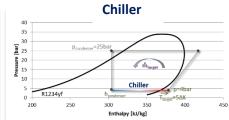

Derivation of Refrigerant Circuit Components for GT-SUITE Library

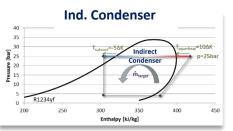
Component test bench measurements for existing components used to build and calibrate GT-model with all available input with regard to geometry.

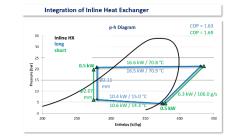

Find correlations with regard to heat transfer, pressure loss/rise, flow rate, etc. to scale components in size and performance.

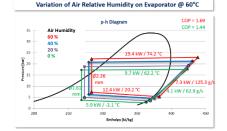

Based on existing components the entire refrigerant circuit can be rescaled and adapted to new vehicles, test conditions, strategies, etc.






Evaporator

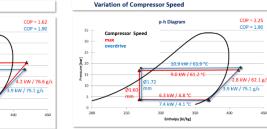

Thermal Design and Analysis of Electric Vehicles **Circuit Ceck with Standard Sensitivity Study**

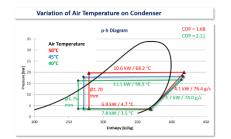

Model Check with Standard Sensitivity Study

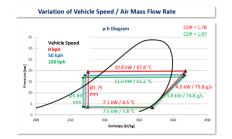
... change only a single parameter and investigate how the system behaves

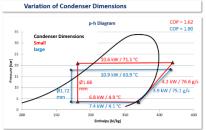
Standard Sensitivity Study to ensure

- ... simulation runs stable, fast and converges for various operating conditions
- → requirement to simulate dynamic drive cycles in larger systems
- solutions and results are reasonable!

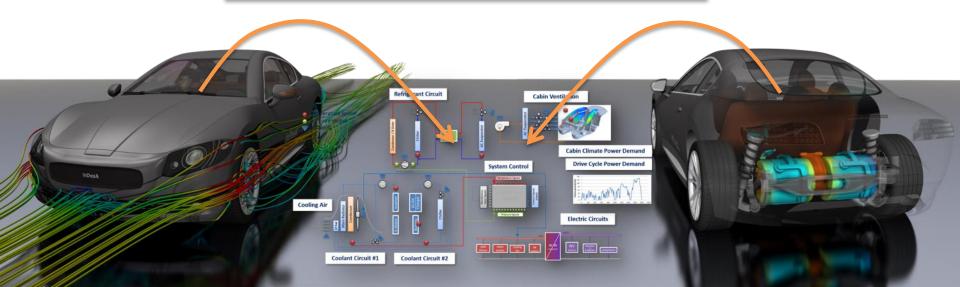





COP = 2.25


COP = 1.90

450



B Thermal Design and Analysis of Electric Vehicles 3D Thermal System Simulation

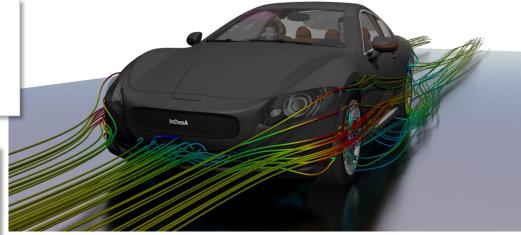
3D CFD/CHT simulation relevant for HVAC System Design

- > Vehicle aerodynamics and underhood flow
- > Cabin heating with solar radiation
- > Cabin cooling and ventilation
- E-Drive Thermal System
- Battery Thermal System

InDesA

Thermal Design and Analysis of Electric Vehicles Aerodynamic and Underhood Flow

Exterior and Underhood Flow Simulation


- > Vehicle Aerodynamics
- > Flow through Condenser/Radiator and Fan Module (CRFM)
- Vehicle underfloor Flow

Prediction of

- Aerodynamic drag
- > Mass flow rates and losses through CRFM
- Heat Release from Radiator/Condenser
- > Heat Transfer Coefficients (Cabin, Transmission)

Relevance for 1D System Simulation

- Aerodynamic drag
- Calibration of cooling air flow model (CRFM)
- HTC's for cabin exterior

INTEGRATED DESIGN ANALYSIS

Thermal Design and Analysis of Electric Vehicles Cabin Flow and Heat Transfer with Solar Radiation

Cabin Thermal Comfort Simulation

- CFD Cabin flow
- > CHT Cabin Structure (body frame, windows, seats, etc.)
- Solar Radiation

Prediction of

- Cabin warm-up / cool-down
- Thermal comfort
- Thermal Balance Analysis

Relevance for 1D System Simulation

- · Calibration of multi-zone cabin model
- HTC's at windows, walls and other boundaries

InDesA INTEGRATED DESIGN ANALYSIS

Thermal Design and Analysis of Electric Vehicles I. Cabin Warm-up through Solar Radiation

Warm-up Scenario:

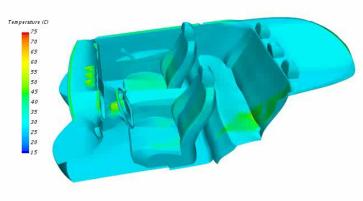
01/08/2018 11:00 CET Parking lot @ InDesA office Site elevation 490 m N 48° 13' E 011° 40' sun shine; no clouds

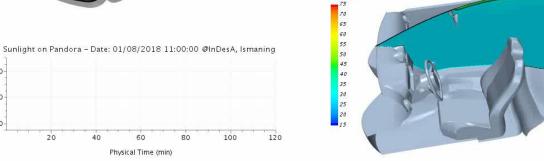
Simulation time 2 hours Cabin start temp. 28°C

Q

Cabin Temperature

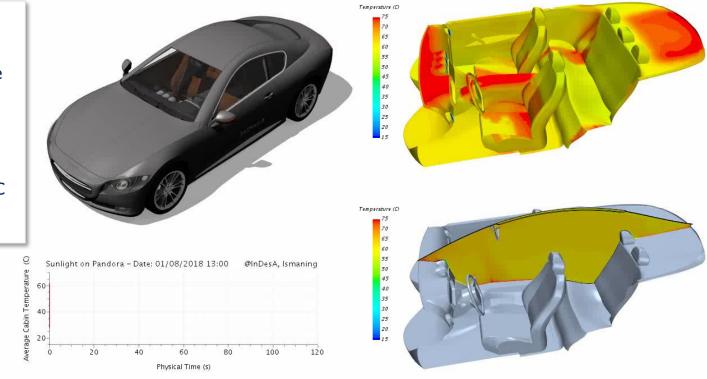
/erage 20-


60-


40

20

40


Temperature (C)

Thermal Design and Analysis of Electric Vehicles II. Cabin Cool Down through Air Conditioning

Cool-Down Scenario:

01/08/2018 13:00 CET Parking lot @ InDesA office Site elevation 490 m N 48° 13' E 11° 40' sun shine; no clouds

Simulation time 2 minutes Avg. cabin start temp. 62°C Vent temp. 10°C Vehicle speed: 0 kph

Thermal Design and Analysis of Electric Vehicles E-Drive Thermal Analysis

E-Drive Thermal Analysis

- > E-Motor (water cooled)
- Inverter (water cooled)
- Transmission (air cooled)

Prediction of

- Local component temperatures
- > Heat transfer analysis

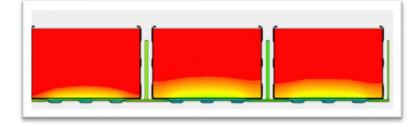
Relevance for 1D System Simulation

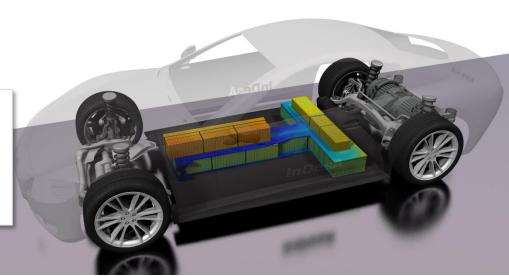
- Heat release from component to coolant
- Calibration of 3D GT-SUITE customized FEM model for e-motor
- Calibration of 1D models for e-motor and inverter with regard to thermal inertia (transient behavior)

INTEGRATED DESIGN ANALYSIS

Thermal Design and Analysis of Electric Vehicles Battery Thermal Analysis

Battery Thermal Analysis

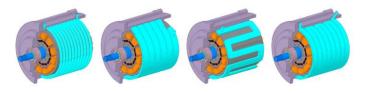

- > Battery packs
- Cold Plate (water cooled)


Prediction of

- Local component/cell temperatures
- > Heat transfer analysis

Relevance for 1D System Simulation

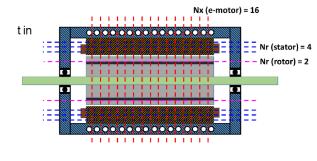
- Heat release from battery to coolant
- Calibration of 1D models for battery with regard to thermal inertia (transient behavior)
- Calibration of 3D GT-Suite customized FEM model for battery


INTEGRATED DESIGN ANALYSIS

Thermal Design and Analysis of Electric Vehicles E-Drive Unit – Towards a High Fidelity 1D Model

1D Simple or Parametric Model

- ➤ Fast to implement
- Fast to scale



- Fully coupled flow and thermal solution
- ➢ high accuracy
- heat transfer to transmission and ambient included.



1D High Fidelity Model with integrated FEM Model

- Calibrated with regard to 3D CFD/CHT model.
- ➤ high accuracy
- Fully integrated into 1D system simulation
- Multi thermal mass model can be derived to reduce simulation times.

INTEGRATED DESIGN ANALYSIS

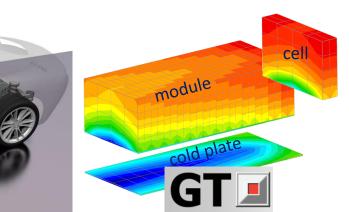
cell

Thermal Design and Analysis of Electric Vehicles Battery Model – Towards a High Fidelity 1D Model

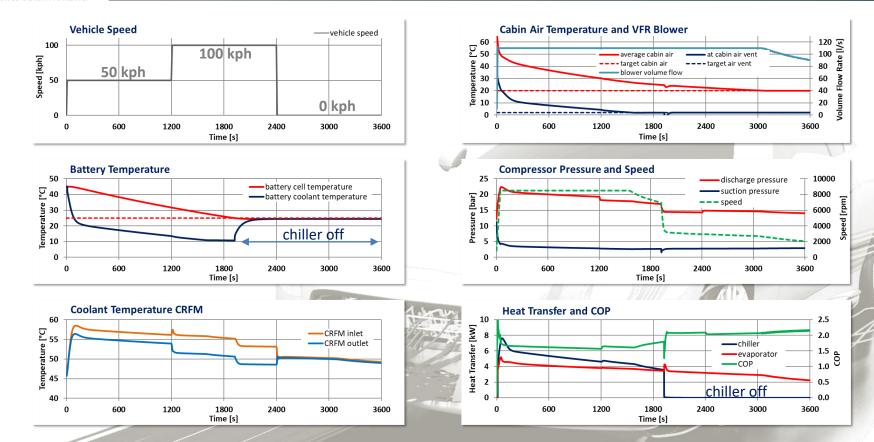
1D Simple or Parametric Model

- > Fast to implement
- > Fast to scale
- Quick to connect to electrical system

3D CFD/CHT Model with vehicle environment


- Fully coupled flow and thermal solution
- ➢ high accuracy
- heat transfer to water cooled cold plate and housing

STAR-CCM

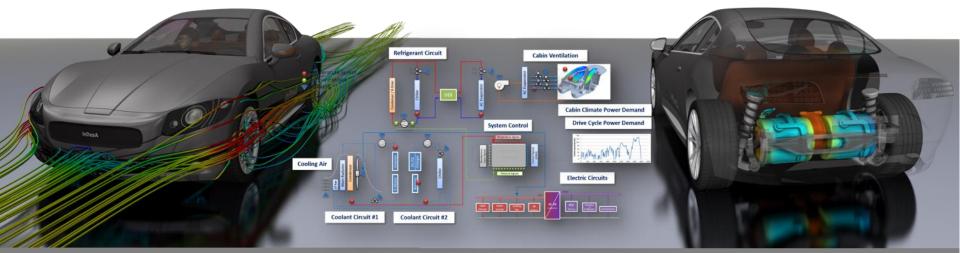

1D High Fidelity Model with integrated FEM Model

- Calibrated with regard to 3D CFD/CHT model.
- ➢ high accuracy
- Fully integrated into 1D system simulation
- Multi thermal mass model can be derived to reduce simulation times.

Thermal Design and Analysis of Electric Vehicles Results for a Standard Pull-Down Procedure

INTEGRATED DESIGN ANALYSIS

ASA


Thermal Design and Analysis of Electric Vehicles Summary

- InDesA maintains a complete suite of 1D/3D simulation methods to cover and manage complex thermal and energy systems of electrified vehicles; adapted to different stages of the virtual development process (V-cycle) i.e. from the early design stage towards the final digital twin.
- InDesA uses a simulation strategy of consecutive steps A B C to generate 1D high fidelity system simulation models in GT-SUITE, where ...
 - A is based on a library of components to find the best concept to fulfil the system targets
 - B is based on 3D CFD/CHT models as 3D CAD become available to improve and calibrate 1D sub-models for modules.
 - C integrated 3D FEM models are used for 1D systems simulation to achieve high fidelity results.
- System model includes the complete coolant and refrigerant circuit, vehicle and drivetrain, cabin, HV components and electric circuit and control functions.
- Results can be obtained for any drive cycle and ambient conditions and be used to develop and test control functions to optimize system efficiency and hence vehicle range.

Thank you for your Attention!

Gerald Seider, Fabiano Bet London, UK 06/06/2019

InDesA GmbH • Carl-Zeiss-Ring 19a • D-85737 Ismaning • Phone +49 (89) 552 7978-10 • Fax +49 (89) 552 7978-29 • www.InDesA.de